Components in Graphs of Diagram Groups over the Union of Two Semigroup Presentations of Integers

(Kumpulan-Kumpulan Gambar Rajah Atas Kesatuan Dua Persembahan Semikumpulan Bagi Integer)

YOUSOF GHEISARI & ABD GHAFUR BIN AHMAD*

ABSTRACT

Given any semigroup presentation, we may obtain the diagram group. The purpose of this paper is to determine the graphs $\Gamma_n(P)$, $(n \in N)$, which are obtained from diagram group for the union of two semigroup presentations of integers with s and t different initial generators. The number of vertices and edges in these graphs will be computed.

Keywords: Diagram groups; generators; initial generators; relation; semigroup presentation

ABSTRAK

Diberi sebarang persembahan semikumpulan, kita boleh peroleh kumpulan gambar rajah. Tujuan kertas ini ialah untuk menentukan graf-graf $\Gamma_n(P)$, $(n \in N)$ yang diperoleh daripada kumpulan gambar rajah untuk kesatuan dua persembahan semikumpulan dengan s dan t penjana awal yang berbeza. Bilangan bucu dan tepi dalam graf-graf ini akan dihitung.

Kata kunci: Hubungan; kumpulan gambar rajah; penjana; penjana awal; persembahan semikumpulan

INTRODUCTION

In our previous work, we obtained the general formula of the component in graphs for semigroup presentation $P = \langle x, y, z | x = y, y = z, x = z \rangle$ and also we obtained the lifts of spanning trees of semigroup presentation $P = \langle x, y, z | x = y, y = z, x = z \rangle$ (Gheisari & Ahmad 2009, 2010). In this research, we determined some properties of component in graphs associated with the semigroup presentations of the union of two semigroup presentations of integers with *s* and *t* different initial generators by adding a relation.

Let $P_1 = \langle x_1, x_2, ..., x_s | x_i = x_j, 1 \le i < j \le s \rangle$, and $P_2 = \langle a_1, a_2, ..., a_i | a_i = a_j, 1 \le i < j \le t \rangle$ be the semigroup presentations. Now we consider the new semigroup presentation $P = \langle x_1, x_2, ..., x_s, a_1, a_2, ..., a_i | x_i = x_j, 1 \le i < j \le s, a_i = a_j, 1 \le i < j \le t \rangle$ obtained from union of initial generators and relations of P_1 and P_2 by adding a relation $x_1 = a_1$. (Guba & Sapir (1997); Kilibarda (1994,1997); Pride (1995)).

In the materials and method section, we will determine the graphs $\Gamma_n(P)$, $(n \in N)$ where $N = \{1, 2, 3, ...\}$ obtained from the semigroup presentation $P = \langle x_1, x_2, ..., x_s, a_1, a_2, ..., a_i | x_i = x_i, 1 \le i < j \le s, a_i = a_i, 1 \le i < j \le t \rangle$.

In the result and discussion section, we computed the total number of vertices and edges in the graphs $\Gamma_n(P)$.

MATERIALS AND METHODS

Let $P = \langle x_1, x_2, ..., x_s, a_1, a_2, ..., a_t | x_i = x_j, 1 \le i < j \le s, a_i = a_j, 1 \le i < j \le t \rangle$ be a semigroup presentation. Associated with any semigroup presentation $S = \langle X | R \rangle$ we have a

graph Γ where the vertices are word on X and the edges are the form $e = (T_1, T_e \rightarrow R_{-e}, T_2)$ such that $\iota(e) = T_1 R_e T_2$, $\tau(e) = (T_1 R_{-e} T_2)$. The graph obtained from S is collections of subgraphs Γ_n . Note that the graph $\Gamma(P_1)$ obtained from P_1 is just a collection of subgraphs $\Gamma_n(P_1)$ where $\Gamma_n(P_1)$ contains all vertices of length n and respective edges. Similarly we obtain $\Gamma_n(P_2)$ for P_2 . Now for P, the graph $\Gamma_n(P) = \Gamma_n(P_1) \cup \Gamma_n(P_2) \cup \{(u, x_1 \rightarrow a_1, v)\}$ such that length uv = n - 1. If T_n is a vertex in $\Gamma_n(P)$, then T_ng , where $(g \in \{x_1, x_2, ..., x_s, a_1, a_2, ..., a_t\}$ is a vertex in $\Gamma_{k+1}(P)$. Similarly, if $(u, R_e \rightarrow R_{-e}, v)$ is a edge in $\Gamma_n(P)$, then $(u, R_e \rightarrow R_{-e}, vg)$ is the respective edges in $\Gamma_{n+1}(P)$. Thus $\Gamma_{n+1}(P)$ is just (s + t) copies of $\Gamma_n(P)$ together with (s + t) vertices $(u, x_1 \rightarrow a_1, vg)(g \in \{x_1, x_2, ..., x_s, a_1, a_2, ..., a_t\})$.

For example the graph $\Gamma_1(P)(V_1, E_1)$, where $V_1 = X = \{x_1, x_2, \dots, x_s, a_1, a_2, \dots a_l\}$ is set of vertices in the graphs of $\Gamma_1(P)$ and let $e_{1x} = \{(1, x_i \rightarrow x_j, 1), (1 \le i < j \le s)\}$, and $e_{1a} = \{(1, a_i \rightarrow a_j, 1), (1 \le i < j \le t\}, E_1 = \{e_{1x} \cup e_{1a} \cup x_1 = a_1\}$ is set of edges in the graph $\Gamma_1(P)$ (Figure 1).

And $\Gamma_2(P)(V_2, E_2)$ is (s + t) copies of $\Gamma_1(P)(V_1, E_1)$. Similarly we may obtain the graph for $\Gamma_n(P)(V_n, E_n)$, $(n \in N)$.

Note that $\Gamma_2(P)$ is (s + t) copies of $\Gamma_1(P)$ and each vertex in each copy are joined together, respectively by considering the relation $x_1 = a_1$. Similarly, with (s + t) copies of $\Gamma_2(P)$, we may obtain $\Gamma_3(P)$. Repeating similar procedures for $\Gamma_4(P)$ and so on to obtain $\Gamma_n(P)$.

RESULTS AND DISCUSSION

Lemma Let $P = \langle x_1, x_2, \dots, x_s, a_1, a_2, \dots, a_l | x_i = x_j, 1 \le i < j \le s, a_i = a_j, 1 \le i < j \le t \rangle$ be the presentation, and u and v are two positive words on $\{x_1, x_2, \dots, x_s, a_1, a_2, \dots, a_l\}$, if length (u) = length (v) then $\pi_1(K(S), u) = \pi_1(K(S), v)$.

Proof: The proof of this lemma is similar to that of lemma 2.3 in Gheisari and Ahmad (2009), and Ahmad and Al-Odhari (2004).

Lemma Let the following semigroup presentation of integers $P_1 = \langle x_1, x_2, ..., x_s | x_i = x_j, 1 \le i < j \le s \rangle$. The number of vertices in $\Gamma_n(P_1)$ is $v_n = s^n$, where v_i is the number of vertices in $\Gamma_i(P_1)(i = 1, 2, 3, ...)$.

Proof: By induction on *n*.

Lemma Consider the semigroup presentation of integers $P_2 = \langle a_1, a_2, ..., a_i | a_i = a_j, 1 \le i < j \le t \rangle$. The number of vertices in $\Gamma_n(P_2)$, is $v_n = t^n$.

Proof: By induction on *n*.

Theorem Let the following semigroup presentation $P = \langle x_1, x_2, ..., x_s, a_1, a_2, ..., a_i | x_i = x_j, 1 \le i < j \le s, a_i = a_j, 1 \le i < j \le t \rangle$. The number of vertices in $\Gamma_n(P)$ is $v_n = (s + t)^n$, where v_i is the number of vertices in $\Gamma_i(P)(i = 1, 2, 3, ...)$.

Proof: By induction, for k = 1 the number of all vertices in $\Gamma_1(P)$ is (s + t). Thus for k = 1 is true (Figure 1). Now assume $v_k = (s + t)^k$ be the number of all vertices in $\Gamma_k(P)$. We will prove that the number of all vertices in $\Gamma_{k+1}(P)$ is $v_{k+1} = (s + t)^{k+1}$. By definition $\Gamma_{k+1}(P)$ is (s + t) copies of $\Gamma_k(P)$ and using the assumption, then the vertices of $\Gamma_{k+1}(P)$ is $v_{k+1} = (s + t)$. $(s + t)^k = (s + t)^{k+1}$

Theorem The total number of edges in the graph $\Gamma_n(P)$ is

$$e_{n} = \begin{cases} 4e_{n-1} + 3(4^{n-1}) & \text{if } (s = t = 2) \\ (s+t)e_{n-1} + (s+t)^{n} + (s+t)^{n-1} & \text{if } (s \neq 2, t \neq 2) \\ (s+t)e_{n-1} + (s+t)^{n} & \text{if } (s,t \neq 2) \text{simultanuesly} \end{cases}$$

where e_i is the number of edges in $\Gamma_i(P)(i = 1, 2, 3, ...)$.

Proof: Case 1: If s = t = 2, then we have the semigroup presentations ${}^{2}P_{1} = \langle x_{1}, x_{2} | x_{1} = x_{2} \rangle$, ${}^{2}P_{2} = \langle a_{1}, a_{2} | a_{1} = a_{2} \rangle$. Now we consider the new semigroup presentation $P = \langle x_{1}, x_{2}, a_{1}, a_{2} | x_{1} = x_{2}, a_{1} = a_{2}, x_{1} = a_{1} \rangle$ obtained from the union of initial generators and relations of ${}^{2}P_{1}$ and ${}^{2}P_{2}$ by adding a relation $x_{1} = a_{1}$.

Now consider the graphs of $\Gamma_1(P)$ in Figure 2, and $\Gamma_2(P)$ in Figure 3.

By definition, $\Gamma_n(P)$ is four copies of $\Gamma_{n-1}(P)$, and by considering the Figures 2 and 3, if there is e_{n-1} edges in $\Gamma_{n-1}(P)$, where e_{n-1} is the number of all edges in $\Gamma_{n-1}(P)$ then the number of edges in $\Gamma_n(P)$ is $4e_{n-1}$ plus all edges between the vertices in $\Gamma_n(P)$, which is $3 \times 4^{n-1}$. Thus the number of all edges in $\Gamma_n(P)$ is $e_n = 4e_{n-1} + 3 \times 4^{n-1}$.

FIGURE 1. Graph of $\Gamma_1(P)$

FIGURE 2. Graph of $\Gamma_1(P)$

FIGURE 3. Graph of $\Gamma_2(P)$

Case 2: By definition $\Gamma_n(P)$ is (s + t) copies of $\Gamma_{n-1}(P)$. Thus if there is e_{n-1} edges in $\Gamma_{n-1}(P)$, then the number of edges in $\Gamma_n(P)$ is $(s + t) e_{n-1}$ plus all edges between the vertices in $\Gamma_n(P)$ with considering the relation $x_1 = a_1$, which is $(s + t)^n + (s + t)^{n-1}$. Thus the number of all edges in $\Gamma_n(P)$ is $e_n = (s + t)e_{n-1} + (s + t)^n + (s + t)^{n-1}$.

Case 3: For Case 3, first if we prove that s = 2, t = 3, then for case 3 is similarly to this proof. Let the following semigroup presentations of integers ${}^{2}P_{1} = \langle x, y, z | x = y, x = z, y = z \rangle$, and ${}^{2}P_{2} = \langle a, b | a = b \rangle$. Now we consider the new semigroup presentation $P = \langle x, y, z, a, b | x = y, x = z, y = z, a = b, x = a \rangle$ obtained from the union of initial generators and relations of ${}^{2}P_{1}$ and ${}^{2}P_{2}$ by adding a relation x = a. Now consider the graphs of $\Gamma_{1}(P)$ in Figure 4, and $\Gamma_{2}(P)$ in Figure 5.

FIGURE 4. Graph of $\Gamma_1(P)$

The graph of $\Gamma_2(P)$ is just five copies of $\Gamma_1(P)$ (Figure 5).

FIGURE 5. Graph of $\Gamma_2(P)$

This completes the proof. For this case we will prove that the recurrence formula of the number of all edges in $\Gamma_n(P)$ is $e_n = 5e_{n-1} + 5^n$, where e_i is the total number of edges in $\Gamma_i(P)(i = 1, 2, 3, ...)$.

By definition $\Gamma_n(P)$ is five copies of $\Gamma_{n-1}(P)$, and considering the graphs of $\Gamma_1(P)$ and $\Gamma_2(P)$ (refer to Figures 4, and 5). Thus if there is e_{n-1} edges in $\Gamma_{n-1}(P)$, then the number of edges in $\Gamma_n(P)$ is $5e_{n-1}$ plus all edges between the vertices in $\Gamma_n(P)$, which is 5^n . Thus the number of all edges in $\Gamma_n(P)$ is $e_n = 5e_{n-1} + 5^n$. In this paper we determined the graphs $\Gamma_n(P)$, $(n \in N)$, which is obtained from union of two semigroup presentation of integers with finite different initial generators. Also we computed the number of vertices and edges of these graphs.

REFERENCES

- Ahmad, A.G.B. & Al-Odhari, A.M. 2004. The graph of diagram groups constructed from natural numbers semigroup with a repeating generator. *Jour. of Inst. of Math & Com. Sci. (Math. Ser.)* 17: 67-69.
- Gheisari, Y. & Ahmad, A.G.B. 2009. Spanning trees for diagram groups of semigroup presentation $P = \langle x, y, z | x = y, y = z, z = z \rangle$ using lifting method. *Proceeding of the 5th Asian Mathematical Conference, Kuala Lumpur* pp. 366-372.
- Gheisari, Y. & Ahmad, A.G.B. 2010. General polynomial for component of graphs from diagram group of semigroup presentation $P = \langle x, y, z | x = y, y = z, z = z \rangle$. Journal of International Mathematical Forum 18: 875-880.
- Guba, V. & Sapir, M. 1997. Diagram Groups. Memoirs of the American Mathematical Society.
- Kilibarda, V. 1997. On the algebra of semigroup diagrams, *Int. Journal of Alg. and Comput.* 7: 313-338.
- Kilibarda, V. 1994. On the algebra of semigroup diagram. PhD Thesis. University of Nebraska.
- Pride, S.J. 1995. Geometric method in combinatorial group theory. In Proc. of Int. Conf. on Groups, editor by J. Fountain. Semigroups and Formal Languages. NY: Kluwer Publ. pp. 215-23.

Abd Ghafur Bin Ahmad* School of Mathematical Science Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Malaysia

Yousof Gheisari Department of Mathematics Boushehr Branch, Islamic Azad University Boushehr Iran

*Corresponding author; email: ghafur@ukm.my

Received: 24 February 2011 Accepted: 13 April 2011